Location Intelligence
Infrastructure Asset Management

Confirm

Confirm Web API
v25.20e.AM

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of the vendor or its representatives. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying,
without the written permission of Confirm.

© 2026 Confirm. All rights reserved.

Products named herein may be trademarks of their respective manufacturers and are hereby re-
cognized. Trademarked names are used editorially, to the benefit of the trademark owner, with
no intent to infringe on the trademark.

Open Source Attribution Notice
The Confirm suite of products contain the following open source software:

» Feature Data Objects v 3.5.0, which is licensed under GNU Lesser General Public License,
Version 2.1, February 1999 with the unRAR restriction. The license can be downloaded from:
http://fdo.osgeo.org/licenceAndGovernance.html. The source code for this software is
available from http://fdo.osgeo.org/content/fdo-350-downloads

» MrSID software (specifically the mrsid32.dll) is used under license and is Copyright © 1995-2002,
LizardTech, Inc., 1008 Western Ave., Suite 200, Seattle, WA 98104. All rights reserved. MrSID
is protected by U.S. Patent No. 5,710,835. Foreign patents are pending. Unauthorized use or
duplication prohibited.

Patented technology in the Software was developed in part through a project at the Los Alamos
National Laboratory, funded by the U.S. Government and managed by the University of California.
The U.S. Government has reserved rights in the technology, including a non-exclusive, nontrans-
ferable, irrevocable, paid-up license to practice or have practiced throughout the world, for or
on behalf of the United States, inventions covered by the patent, and has other rights under 35
U.S.C. § 200-212 and applicable implementing regulations.

For further information, contact Lizardtech.

* NodaTime, version number 1.3.10, which is licensed under the Apache license, version number
2.0. The license can be downloaded from http://www.apache.org/licenses/LICENSE-2.0 . The
source code for this software is available from http://nodatime.org/.

e Chromium Embedded Framework, version 3, which is licensed under the New BSD License.
The license can be downloaded from http://opensource.org/licenses/BSD-3-Clause. The source
code for this software is available from http://code.google.com/p/chromiumembedded/down-
loads/list.

+ Xilium.CefGlue, version 3, which is licensed under the MIT License (with portions licensed under
the New BSD License). The licenses can be downloaded from http://opensource.org/licenses/MIT
and http://opensource.org/licenses/BSD-3-Clause. The source code for this software is available
from http://xilium.bitbucket.org/cefglue/.

» D3 Data Driven Documentation, version 3.4.1, which is licensed under the New BSD License.
The license can be downloaded from from https://github.com/mbostock/d3/blob/master/LICENSE.
The source code for this software is available from http://d3js.org/.

» OpenLayers, version 8.1, which is licensed under the BSD 2-Clause Licence. The license which
can be downloaded from https://github.com/openlayers/openlayers/blob/master/LICENSE.md
The source code for this software is available from https://github.com/openlayers/openlayers.

* Projdjs, version 1+, which is licensed under the Apache License, Version 2, January 2004. The
license can be downloaded from http://www.apache.org/licenses/LICENSE-2.0.html. The source
code for this software is available from http://trac.osgeo.org/proj4js/.

* requiredS, version 2.1.2, which is licensed under the MIT License or the New BSD License. The
license can be downloaded from https://github.com/jrburke/requirejs/blob/master/LICENSE. The
source code for this software is available from http://requirejs.org/.

» Apache Cordova, version 11.1.0, which is licensed under the Apache License, Version 2,
January 2004. The license can be downloaded from http://www.apache.org/licenses/LICENSE-
2.0.html. The source code for this software is available from http://phonegap.com/download/.

* Xilium.CefGlue, version 75.1, which is unlicensed. The source code for this software is available
from https://gitlab.com/xiliumhg/chromiumembedded/cefglue.

http://fdo.osgeo.org/content/licence-and-governance
http://fdo.osgeo.org/content/licence-and-governance

» Chromium Embedded Framework, version 75.0, which is licensed according to the following
criteria:

Copyright (c) 2008-2014 Marshall A. Greenblatt. Portions Copyright (c) 2006-2009 Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distri-
bution.

* Neither the name of Google Inc. nor the name Chromium Embedded Framework nor the names
of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS I1S" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The source code for this software is available from http://opensource.spotify.com/cefbuilds/in-
dex.html#

January 20, 2026

Table of Contents

Specifications

Confirm Web API
Query API -
Query
Capture
Query API - GIS
Synchronisation
Query API -
Pagination
Generating an
OAuth
token
Authenticating
with an API
Key

Specifications

The following sections outline all the Specifications that exist within the
Confirm functionality.

In this section

Confirm Web API 6

Specifications

Confirm Web API

Introduction

The Confirm Web APl is a set of RESTful web APIs, which allows retrieval and modification of data in
the Confirm database. The APls are available automatically with the Confirm web interface.

The APIs can be categorized into two types - Create/Update APl and Query API, each of which is de-
scribed below.

Create/Update API
This API can be used to create new records and to modify existing records.
The following entities and operations are currently available:

Entity Operations

Features Create a Feature with Feature Conditions, Feature Attributes, Fea-
ture Measurements and Feature Dates.

Update a Feature with Feature Conditions, Feature Attributes,
Feature Measurements and Feature Dates.

Jobs Create a Job with Job ltems.
Update a Job with Job Items.

Commit a Job.

Defects Create a Defect with Defect Attributes.
Update a Defect with Defect Attributes.

CentralEnquiries Add Images and Documents to an Enquiry.

Payments Create Payment Batch from supplied Jobs. Generates Items auto-
matically, according to Job's current outstanding Items and the
supplied Job Value.

For more detailed information on how to use the Confirm Web API, refer to the schema definition:

» ConfirmWebApi.yaml|

Query API
This APl is designed to allow 3rd party systems to get data from Confirm.

It is developed using GraphQL language, which gives more flexibility and efficiency. It allows users to
ask for what they need and nothing more.

The GraphQL query can be generated either via Confirm Web - Reporting interface or directly using
GraphQL Introspection.

The query can be captured from Confirm Web - Reporting interface using the browser once a report is
run, as described here: Query API - Query Capture .

Confirm 6 of 11

Specifications

One use of the Query APl is to allow an exernal GIS to synchronise data with Confirm, as described
here: Query API - GIS Synchronisation .

Confirm Web - APl Authentication

Authentication for the Confirm Web API can be achieved using either OAuth or an API Key linked with
a Confirm User. See below for more details of each option:

* Generating an OAuth token
* Authenticating with an API Key

Query API - Query Capture

The query can be captured from Confirm Web - Reporting interface using the browser once a report
is run.

This can be done in multiple ways, developer console in browsers being one of them. Sample
screen-shot from chrome browser is as below:

€ DevTools - sky-8433116, = X

& al Elements ~ Console Sources Network Performance ~ Memory Application Security Lighthouse ARC Toolkit axe - 2

® O | ¥ Q Orreservelog (J Disable cache | Online v | # ¥ o
20ms 20ms 60ms 30ms 100ms 120ms 140ms 160ms 180ms 200ms 220ms 240ms 0m 280 ms 00 20

Name X Headers Preview Response Initiator Timing Cookies

_| graphal v General

Request URL: http://sky-8433116/confirmuebbeta/api/samnbutility/graphql
Request Method: POST
Status Code: @ 200 0K
Remote Address: 192.168.29.4:80
Referrer Policy: strict-origin-when-cross-origin
» Response Headers (11)
» Request Headers (13)
vRequest Payload view parsed

{"query”:"{features(filter: {revisionhumber: {greaterThan:1}}){siteCode plotNumber geometry featureType{featureGroup(filter: {code: {contains:\"slst\"}}){cod
e}} attribute_sLBH{attributevalueCode} attribute_SLOR{attributevalueCode} revisionNumber}}"}

The value of query property (without quotes) within ‘Request Payload’ is the GraphQL query.
Sample GraphQL query is below:
{features(filter: {revisionNumber: {greaterThan:1}}){siteCode plotNumber geometry feature Type{fea-

tureGroup(filter: {code: {contains:"sIst"}}){code}} attribute SLBH({attribute ValueCode} attrib-
ute_SLOR({attribute ValueCode} revisionNumber}}

The results are returned in the JSON format and can be seen in the developer console of the
browser as well. Sample screen-shot from chrome browser below:

Confirm 7 of 11

Specifications

& DevTools - sky-8433116/confirmwebbeta/app/index.html?tenant=samnbutility

[w ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse ARC Toolkit axe
® ©® | ¥ Q [JPreservelog [Disable cache | Online v 4+ ¥
20 ms 40 ms 60 ms 80ms 100 ms 120 ms 140 ms 160 ms 180 ms 200 ms 220 ms 24(

Name X Headers Preview Response Initiator Timing Cookies

|| graphg| v i)
vdata: {features: [{siteCode: "2000006", plothumber: 1, geometry: "POINT (-74.004004 40.868176)",..},..]}
v features: [{siteCode: "2000006", plotNumber: 1, geometry: "POINT (-74.004004 40.868176)",..},..]
» [0 .. 99]
v [100 .. 199]
v100: {siteCode: "47700239", plotNumber: 168015, geometry: "POINT (-3.756417 51.569629)",..}
v attribute SLBH: {attributevalueCode: "2"}
attributevalueCode: "2"
vattribute SLOR: {attributevalueCode: "2"}
attributevaluecode: "2"
v featureType: {featureGroup: {code: "SLST"}}
v featureGroup: {code: "SLST"}
code: "SLST"
geometry: "POINT (-3.756417 51.569629)"
plotNumber: 188015
revisionNumber: 3
siteCode: "47708239"
»101: {siteCode: "47700239", plotNumber: 18@016, geometry: "POINT (-
»102: {siteCode: "47700239", plotNumber: 1eee17, geometry: "POINT (-
»103: {siteCode: "47700239", plotNumber: 180018, geometry: "POINT (-
»104: {siteCode: "47700239", plotNumber: 160019, geometry: "POINT (-
»105: {siteCode: "47700239", plotNumber: 186020, geometry: "POINT (-
» 106: {siteCode: "47700239", plotNumber: 100021, geometry: "POINT (-
»107: {siteCode: "47700239", plotNumber: 18022, geometry: "POINT (-3.754014 51.569442)"
»1088: {siteCode: "47700239", plotNumber: 180023, geometry: "POINT (-3.753677 51.569478)"
»109: {siteCode: "47700239", plotNumber: 160824, geometry: "POINT (-3.753391 51.569399)"
» 11@: {siteCode: "47700239", plotNumber: 18€025, geometry: "POINT (-3.753197 51.569467)",..
b 111: {siteCode: "47700239", plotNumber: 100026, geometry: "POINT (-3.752986 51.569457)"
»112: {siteCode: "47700239", plotNumber: 108027, geometry: "POINT (-3.752818 51.569383)"

.755885 51.569547)",..
.755689 51.569591)"
.755479 51.569514)"
.755262 51.569567)"
.75493 51.569484)",.}
.754664 51.569536)"

i

:
:
3
3

WM W W W W W W W W W

LS

The captured query can also be run in a REST API client (like Postman), GraphQL query needs
to be supplied as a query parameter in the GET request. Sample URL below:

https://ConfirmWebServer/ConfirmWeb/api/DatabaseName/graphql

Query API - GIS Synchronisation

One use of the Query APl is GIS Synchronisation, where an external GIS can use the Query API
to obtain up to date Feature data from Confirm.

GIS synchronization is based on Revision Number field hence it needs be part of API requests.
Revision Number is used to keep track of when a feature was last updated so that only Confirm
Features that have changed since the last synchronisation are fetched.

The response of this would be JSON list of features with specified columns filtered by the criteria
specified in the query. Below is the sample screen-shot of GET API run in the Postman tool:

Confirm 8 of 11

Specifications

GET http://sky-843311... ® } s00 No Environment v (©
http://sky-8433116/confirmwebbeta/api/samnbutility/graphql?query={features(filter: {revisionNumber: {.. [I) Save v >
GET v http://sky-8433116/confirmwebbeta/api/samnbutility/graphgl?query={features(filter: {revisionNumber: Send v

Params @ Authorization @ Headers (7) Body Pre-reguest Script Tests Settings Cookies

Query Params

KEY VALUE DESCRIPTION 000 Bulk Edit
query {features(filter: {revisionNumber: {greaterT...
Body Cookies Headers (11) Test Results @ 2000k 1276 ms 10378 KB Save Response
Pretty Raw Preview Visualize JSON v = mQ
1
data": {
"feature [

"siteCode": "2000006",

"plotNumbexr": 1.00,

"geometry": "POINT (-74.004004 40.868176)",
"featureType": {

W N o AW N

0

"featureGroup": {

Note: A revision number could include up to 1000 features. Hence it is recommended to have a
maximum revision number on GraphQL queries when performing initial synchronization
in order to limit the results.

Query API - Pagination

Pagination is used to divide a record set into discrete pages with the following parameters:

* pageNumber
* pageSize

The pageNumber specifies the page number, while the pageSize specifies the number of
items(records) per page. For instance, if a user has 100 items and wishes to display 10 items per
page, there will be a total of 10 pages.

A Summary entity can be included in the request which contains two properties:

» queryName
+ totalCount

The queryName refers to the entity name queried by the user, while totalCount represents the
total number of records present in the database for the queried entity.

Below is a sample API request which is asking for the the second page of results, where there
are 5 items per page:

query Features {
features (
pagination: { pageNumber: "1", pageSize: "5" }
filter: { wardCode: { equals: "PT" } }

) A
plotNumber
siteCode
startDate
}

summary {

Confirm 9 of 11

queryName
totalCount

}

The following is a sample response to the above request:

{
"data": {
"features":

{

"plotNumber":
"siteCode":
"startDate":

"plotNumber":
"siteCode":
"startDate":

"plotNumber":
"siteCode":
"startDate":

"plotNumber":
"siteCode":
"startDate":

"plotNumber":
"siteCode":
"startDate":

}
I

"summary":

{

"queryName":
"totalCount":

Generating an OAuth token

[

[

7,

"47700294",
"1990-01-01T00:

7,

"47703504",
"1990-01-01T0O0:

7,

"47712347",
"1990-01-01T0O0:

7y

"47712617",
"1990-01-01T0O0:

7y

"47712327",
"1990-01-01T00:

"features",
1226

Follow the steps to generate an OAuth token:

00:

00:

00:

00:

00:

OO"

OO"

OO"

OO"

OO"

Specifications

1. Obtain your API Key (Username) and Secret (password) from Confirm system administrator

2. To generate the OAuth Token, encode your credentials (API Key and Secret) using base64
computation mechanism. To do this, provide API KEY and Secret to the base64 encoder (online
encoder can be used), and generate the encoded 'base64value'.

3. The following format should be used while computing the {BASEG64VALUE}:

{API KEY}:{SECRET}

Confirm

10 of 11

Specifications

4. Enter the generated 'base64value' in the header of the request and call the token URI as shown
in Figure 1 below:

Here, {tenant} is the tenant name and {Confirm web url} is the URL where Confirm web is de-
ployed, like https://ConfirmWebServer/ConfirmWeb/.

5. The access token is returned as Figure 2 below

Figure 1:

Figure 2:

valuel}",

Authorization: Basic {base64Value}
Content-Type: application/x-www-form-urlencoded
POST {Confirm web url}/api/{tenant}/ocauth/token
grant type=client credentials

{

"access token": "{your access token as a Base64 encoded
"token type": "bearer",
"expires in": {The expiry time in seconds}

}

Authenticating with an APl Key

Follow the steps to generate an API Key for a Confirm User and use in a Confirm Web API:

1.

2,

On the User Security screen use the API Key button to generate an API for the User. Make

sure you store this key securely, since it will not be accessible directly in Confirm again.

The following format should be used while computing the {BASE64VALUE}:

{username}:{api key}

. Enter the generated 'base64value' in the header of the request and call the Confirm Web URI
as shown below:

Authorization: Basic {base64Value}

Confirm

11 of 11

	Table of Contents
	Specifications
	Confirm Web API
	Query API - Query Capture
	Query API - GIS Synchronisation
	Query API - Pagination
	Generating an OAuth token
	Authenticating with an API Key

